Commit e5a34f

2024-10-19 13:36:07 Qwas: Save 数学公式
/dev/null .. "b/\351\253\230\346\225\260/\346\225\260\345\255\246\345\205\254\345\274\217.md"
@@ 0,0 1,57 @@
+ # 数学公式
+
+ ## 泰勒公式
+
+ ```math
+ e^x = 1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!}
+ sinx = x-\frac{x^3}{3!}+...+(-1)^n\frac{x^{2n+1}}{(2n+1)!}
+ cosx = 1-\frac{x^2}{2!}+...+(-1)^n\frac{x^{2n}}{(2n)!}
+ ln(1+x) = x-\frac{x^2}{2}+...+(-1)^{n-1}\frac{x^n}{n}
+ \frac{1}{1-x} = 1+x+x^2+...+x^n$ ,|x|<1
+ \frac{1}{1+x} = 1-x+x^2-...+(-1)^nx^n
+ (1+x)^a = 1+ax+\frac{a(a-1)}{2}x^2+O(x^2)
+ tanx = x+\frac{1}{3}x^3+O(x^3)
+ arcsinx = x+\frac{1}{6}x^3+O(x^3)
+ arctanx = x-\frac{1}{3}x^3+O(x^3)
+ ```
+
+ ## 高阶导数
+
+ ```math
+ a^{x^{(n)}} = a^x(lna)^n ,a>0, a\neq 1
+ e^{x^{(n)}} = e^x
+ (sinkx)^{(n)} = k^nsin(kx+n\cdot \frac{\pi}{2})
+ (coskx)^{(n)} = k^ncos(kx+n\cdot \frac{\pi}{2})
+ (lnx)^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{x^n}
+ (\frac{1}{x})^{(n)} = (-1)^n \cdot \frac{n!}{x^{n+1}}
+ [ln(1+x)]^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{(1+x)^n}
+ (\frac{1}{1+a})^{(n)} = (-1)^n \cdot \frac{n!}{(x+a)^{n+1}}
+ [(x+x_0)^m]^{(n)} = m(m-1) \cdot \cdot \cdot (m-n+1)(x+x_0)^{m-n}
+ ```
+
+ ## 源码
+
+ ```txt
+ ## 泰勒公式
+ e^x = 1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!}
+ sinx = x-\frac{x^3}{3!}+...+(-1)^n\frac{x^{2n+1}}{(2n+1)!}
+ cosx = 1-\frac{x^2}{2!}+...+(-1)^n\frac{x^{2n}}{(2n)!}
+ ln(1+x) = x-\frac{x^2}{2}+...+(-1)^{n-1}\frac{x^n}{n}
+ \frac{1}{1-x} = 1+x+x^2+...+x^n$ ,|x|<1
+ \frac{1}{1+x} = 1-x+x^2-...+(-1)^nx^n
+ (1+x)^a = 1+ax+\frac{a(a-1)}{2}x^2+O(x^2)
+ tanx = x+\frac{1}{3}x^3+O(x^3)
+ arcsinx = x+\frac{1}{6}x^3+O(x^3)
+ arctanx = x-\frac{1}{3}x^3+O(x^3)
+
+ ## 高阶导数
+ a^{x^{(n)}} = a^x(lna)^n ,a>0, a\neq 1
+ e^{x^{(n)}} = e^x
+ (sinkx)^{(n)} = k^nsin(kx+n\cdot \frac{\pi}{2})
+ (coskx)^{(n)} = k^ncos(kx+n\cdot \frac{\pi}{2})
+ (lnx)^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{x^n}
+ (\frac{1}{x})^{(n)} = (-1)^n \cdot \frac{n!}{x^{n+1}}
+ [ln(1+x)]^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{(1+x)^n}
+ (\frac{1}{1+a})^{(n)} = (-1)^n \cdot \frac{n!}{(x+a)^{n+1}}
+ [(x+x_0)^m]^{(n)} = m(m-1) \cdot \cdot \cdot (m-n+1)(x+x_0)^{m-n}
+ ```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9