数学公式
泰勒公式
\[e^x = 1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!}\]\[sinx = x-\frac{x^3}{3!}+...+(-1)^n\frac{x^{2n+1}}{(2n+1)!}\]\[cosx = 1-\frac{x^2}{2!}+...+(-1)^n\frac{x^{2n}}{(2n)!}\]\[ln(1+x) = x-\frac{x^2}{2}+...+(-1)^{n-1}\frac{x^n}{n}\]\[\frac{1}{1-x} = 1+x+x^2+...+x^n$ ,|x|<1\]\[\frac{1}{1+x} = 1-x+x^2-...+(-1)^nx^n\]\[(1+x)^a = 1+ax+\frac{a(a-1)}{2}x^2+O(x^2)\]\[tanx = x+\frac{1}{3}x^3+O(x^3)\]\[arcsinx = x+\frac{1}{6}x^3+O(x^3)\]\[arctanx = x-\frac{1}{3}x^3+O(x^3)\]高阶导数
\[a^{x^{(n)}} = a^x(lna)^n ,a>0, a\neq 1\]\[e^{x^{(n)}} = e^x\]\[(sinkx)^{(n)} = k^nsin(kx+n\cdot \frac{\pi}{2})\]\[(coskx)^{(n)} = k^ncos(kx+n\cdot \frac{\pi}{2})\]\[(lnx)^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{x^n}\]\[(\frac{1}{x})^{(n)} = (-1)^n \cdot \frac{n!}{x^{n+1}}\]\[[ln(1+x)]^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{(1+x)^n}\]\[(\frac{1}{1+a})^{(n)} = (-1)^n \cdot \frac{n!}{(x+a)^{n+1}}\]\[[(x+x_0)^m]^{(n)} = m(m-1) \cdot \cdot \cdot (m-n+1)(x+x_0)^{m-n}\]源码
txt ## 泰勒公式 e^x = 1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!} sinx = x-\frac{x^3}{3!}+...+(-1)^n\frac{x^{2n+1}}{(2n+1)!} cosx = 1-\frac{x^2}{2!}+...+(-1)^n\frac{x^{2n}}{(2n)!} ln(1+x) = x-\frac{x^2}{2}+...+(-1)^{n-1}\frac{x^n}{n} \frac{1}{1-x} = 1+x+x^2+...+x^n$ ,|x|<1 \frac{1}{1+x} = 1-x+x^2-...+(-1)^nx^n (1+x)^a = 1+ax+\frac{a(a-1)}{2}x^2+O(x^2) tanx = x+\frac{1}{3}x^3+O(x^3) arcsinx = x+\frac{1}{6}x^3+O(x^3) arctanx = x-\frac{1}{3}x^3+O(x^3) ## 高阶导数 a^{x^{(n)}} = a^x(lna)^n ,a>0, a\neq 1 e^{x^{(n)}} = e^x (sinkx)^{(n)} = k^nsin(kx+n\cdot \frac{\pi}{2}) (coskx)^{(n)} = k^ncos(kx+n\cdot \frac{\pi}{2}) (lnx)^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{x^n} (\frac{1}{x})^{(n)} = (-1)^n \cdot \frac{n!}{x^{n+1}} [ln(1+x)]^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{(1+x)^n} (\frac{1}{1+a})^{(n)} = (-1)^n \cdot \frac{n!}{(x+a)^{n+1}} [(x+x_0)^m]^{(n)} = m(m-1) \cdot \cdot \cdot (m-n+1)(x+x_0)^{m-n}