Blame
e5a34f | Qwas | 2024-10-19 13:36:07 | 1 | # 数学公式 |
2 | ||||
3 | ## 泰勒公式 |
|||
4 | ||||
5 | ```math |
|||
6 | e^x = 1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!} |
|||
7 | sinx = x-\frac{x^3}{3!}+...+(-1)^n\frac{x^{2n+1}}{(2n+1)!} |
|||
8 | cosx = 1-\frac{x^2}{2!}+...+(-1)^n\frac{x^{2n}}{(2n)!} |
|||
9 | ln(1+x) = x-\frac{x^2}{2}+...+(-1)^{n-1}\frac{x^n}{n} |
|||
10 | \frac{1}{1-x} = 1+x+x^2+...+x^n$ ,|x|<1 |
|||
11 | \frac{1}{1+x} = 1-x+x^2-...+(-1)^nx^n |
|||
12 | (1+x)^a = 1+ax+\frac{a(a-1)}{2}x^2+O(x^2) |
|||
13 | tanx = x+\frac{1}{3}x^3+O(x^3) |
|||
14 | arcsinx = x+\frac{1}{6}x^3+O(x^3) |
|||
15 | arctanx = x-\frac{1}{3}x^3+O(x^3) |
|||
16 | ``` |
|||
17 | ||||
18 | ## 高阶导数 |
|||
19 | ||||
20 | ```math |
|||
21 | a^{x^{(n)}} = a^x(lna)^n ,a>0, a\neq 1 |
|||
22 | e^{x^{(n)}} = e^x |
|||
23 | (sinkx)^{(n)} = k^nsin(kx+n\cdot \frac{\pi}{2}) |
|||
24 | (coskx)^{(n)} = k^ncos(kx+n\cdot \frac{\pi}{2}) |
|||
25 | (lnx)^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{x^n} |
|||
26 | (\frac{1}{x})^{(n)} = (-1)^n \cdot \frac{n!}{x^{n+1}} |
|||
27 | [ln(1+x)]^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{(1+x)^n} |
|||
28 | (\frac{1}{1+a})^{(n)} = (-1)^n \cdot \frac{n!}{(x+a)^{n+1}} |
|||
29 | [(x+x_0)^m]^{(n)} = m(m-1) \cdot \cdot \cdot (m-n+1)(x+x_0)^{m-n} |
|||
30 | ``` |
|||
31 | ||||
32 | ## 源码 |
|||
33 | ||||
34 | ```txt |
|||
35 | ## 泰勒公式 |
|||
36 | e^x = 1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!} |
|||
37 | sinx = x-\frac{x^3}{3!}+...+(-1)^n\frac{x^{2n+1}}{(2n+1)!} |
|||
38 | cosx = 1-\frac{x^2}{2!}+...+(-1)^n\frac{x^{2n}}{(2n)!} |
|||
39 | ln(1+x) = x-\frac{x^2}{2}+...+(-1)^{n-1}\frac{x^n}{n} |
|||
40 | \frac{1}{1-x} = 1+x+x^2+...+x^n$ ,|x|<1 |
|||
41 | \frac{1}{1+x} = 1-x+x^2-...+(-1)^nx^n |
|||
42 | (1+x)^a = 1+ax+\frac{a(a-1)}{2}x^2+O(x^2) |
|||
43 | tanx = x+\frac{1}{3}x^3+O(x^3) |
|||
44 | arcsinx = x+\frac{1}{6}x^3+O(x^3) |
|||
45 | arctanx = x-\frac{1}{3}x^3+O(x^3) |
|||
46 | ||||
47 | ## 高阶导数 |
|||
48 | a^{x^{(n)}} = a^x(lna)^n ,a>0, a\neq 1 |
|||
49 | e^{x^{(n)}} = e^x |
|||
50 | (sinkx)^{(n)} = k^nsin(kx+n\cdot \frac{\pi}{2}) |
|||
51 | (coskx)^{(n)} = k^ncos(kx+n\cdot \frac{\pi}{2}) |
|||
52 | (lnx)^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{x^n} |
|||
53 | (\frac{1}{x})^{(n)} = (-1)^n \cdot \frac{n!}{x^{n+1}} |
|||
54 | [ln(1+x)]^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{(1+x)^n} |
|||
55 | (\frac{1}{1+a})^{(n)} = (-1)^n \cdot \frac{n!}{(x+a)^{n+1}} |
|||
56 | [(x+x_0)^m]^{(n)} = m(m-1) \cdot \cdot \cdot (m-n+1)(x+x_0)^{m-n} |
|||
57 | ``` |