Blame

e5a34f Qwas 2024-10-19 13:36:07 1
# 数学公式
2
3
## 泰勒公式
4
5
```math
6
e^x = 1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!}
7
sinx = x-\frac{x^3}{3!}+...+(-1)^n\frac{x^{2n+1}}{(2n+1)!}
8
cosx = 1-\frac{x^2}{2!}+...+(-1)^n\frac{x^{2n}}{(2n)!}
9
ln(1+x) = x-\frac{x^2}{2}+...+(-1)^{n-1}\frac{x^n}{n}
10
\frac{1}{1-x} = 1+x+x^2+...+x^n$ ,|x|<1
11
\frac{1}{1+x} = 1-x+x^2-...+(-1)^nx^n
12
(1+x)^a = 1+ax+\frac{a(a-1)}{2}x^2+O(x^2)
13
tanx = x+\frac{1}{3}x^3+O(x^3)
14
arcsinx = x+\frac{1}{6}x^3+O(x^3)
15
arctanx = x-\frac{1}{3}x^3+O(x^3)
16
```
17
18
## 高阶导数
19
20
```math
21
a^{x^{(n)}} = a^x(lna)^n ,a>0, a\neq 1
22
e^{x^{(n)}} = e^x
23
(sinkx)^{(n)} = k^nsin(kx+n\cdot \frac{\pi}{2})
24
(coskx)^{(n)} = k^ncos(kx+n\cdot \frac{\pi}{2})
25
(lnx)^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{x^n}
26
(\frac{1}{x})^{(n)} = (-1)^n \cdot \frac{n!}{x^{n+1}}
27
[ln(1+x)]^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{(1+x)^n}
28
(\frac{1}{1+a})^{(n)} = (-1)^n \cdot \frac{n!}{(x+a)^{n+1}}
29
[(x+x_0)^m]^{(n)} = m(m-1) \cdot \cdot \cdot (m-n+1)(x+x_0)^{m-n}
30
```
31
32
## 源码
33
34
```txt
35
## 泰勒公式
36
e^x = 1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!}
37
sinx = x-\frac{x^3}{3!}+...+(-1)^n\frac{x^{2n+1}}{(2n+1)!}
38
cosx = 1-\frac{x^2}{2!}+...+(-1)^n\frac{x^{2n}}{(2n)!}
39
ln(1+x) = x-\frac{x^2}{2}+...+(-1)^{n-1}\frac{x^n}{n}
40
\frac{1}{1-x} = 1+x+x^2+...+x^n$ ,|x|<1
41
\frac{1}{1+x} = 1-x+x^2-...+(-1)^nx^n
42
(1+x)^a = 1+ax+\frac{a(a-1)}{2}x^2+O(x^2)
43
tanx = x+\frac{1}{3}x^3+O(x^3)
44
arcsinx = x+\frac{1}{6}x^3+O(x^3)
45
arctanx = x-\frac{1}{3}x^3+O(x^3)
46
47
## 高阶导数
48
a^{x^{(n)}} = a^x(lna)^n ,a>0, a\neq 1
49
e^{x^{(n)}} = e^x
50
(sinkx)^{(n)} = k^nsin(kx+n\cdot \frac{\pi}{2})
51
(coskx)^{(n)} = k^ncos(kx+n\cdot \frac{\pi}{2})
52
(lnx)^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{x^n}
53
(\frac{1}{x})^{(n)} = (-1)^n \cdot \frac{n!}{x^{n+1}}
54
[ln(1+x)]^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{(1+x)^n}
55
(\frac{1}{1+a})^{(n)} = (-1)^n \cdot \frac{n!}{(x+a)^{n+1}}
56
[(x+x_0)^m]^{(n)} = m(m-1) \cdot \cdot \cdot (m-n+1)(x+x_0)^{m-n}
57
```