Blame
| e5a34f | Qwas | 2024-10-19 13:36:07 | 1 | # 数学公式 |
| 2 | ||||
| 3 | ## 泰勒公式 |
|||
| 4 | ||||
| 5 | ```math |
|||
| 6 | e^x = 1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!} |
|||
| 7 | sinx = x-\frac{x^3}{3!}+...+(-1)^n\frac{x^{2n+1}}{(2n+1)!} |
|||
| 8 | cosx = 1-\frac{x^2}{2!}+...+(-1)^n\frac{x^{2n}}{(2n)!} |
|||
| 9 | ln(1+x) = x-\frac{x^2}{2}+...+(-1)^{n-1}\frac{x^n}{n} |
|||
| 10 | \frac{1}{1-x} = 1+x+x^2+...+x^n$ ,|x|<1 |
|||
| 11 | \frac{1}{1+x} = 1-x+x^2-...+(-1)^nx^n |
|||
| 12 | (1+x)^a = 1+ax+\frac{a(a-1)}{2}x^2+O(x^2) |
|||
| 13 | tanx = x+\frac{1}{3}x^3+O(x^3) |
|||
| 14 | arcsinx = x+\frac{1}{6}x^3+O(x^3) |
|||
| 15 | arctanx = x-\frac{1}{3}x^3+O(x^3) |
|||
| 16 | ``` |
|||
| 17 | ||||
| 18 | ## 高阶导数 |
|||
| 19 | ||||
| 20 | ```math |
|||
| 21 | a^{x^{(n)}} = a^x(lna)^n ,a>0, a\neq 1 |
|||
| 22 | e^{x^{(n)}} = e^x |
|||
| 23 | (sinkx)^{(n)} = k^nsin(kx+n\cdot \frac{\pi}{2}) |
|||
| 24 | (coskx)^{(n)} = k^ncos(kx+n\cdot \frac{\pi}{2}) |
|||
| 25 | (lnx)^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{x^n} |
|||
| 26 | (\frac{1}{x})^{(n)} = (-1)^n \cdot \frac{n!}{x^{n+1}} |
|||
| 27 | [ln(1+x)]^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{(1+x)^n} |
|||
| 28 | (\frac{1}{1+a})^{(n)} = (-1)^n \cdot \frac{n!}{(x+a)^{n+1}} |
|||
| 29 | [(x+x_0)^m]^{(n)} = m(m-1) \cdot \cdot \cdot (m-n+1)(x+x_0)^{m-n} |
|||
| 30 | ``` |
|||
| 31 | ||||
| 32 | ## 源码 |
|||
| 33 | ||||
| 34 | ```txt |
|||
| 35 | ## 泰勒公式 |
|||
| 36 | e^x = 1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!} |
|||
| 37 | sinx = x-\frac{x^3}{3!}+...+(-1)^n\frac{x^{2n+1}}{(2n+1)!} |
|||
| 38 | cosx = 1-\frac{x^2}{2!}+...+(-1)^n\frac{x^{2n}}{(2n)!} |
|||
| 39 | ln(1+x) = x-\frac{x^2}{2}+...+(-1)^{n-1}\frac{x^n}{n} |
|||
| 40 | \frac{1}{1-x} = 1+x+x^2+...+x^n$ ,|x|<1 |
|||
| 41 | \frac{1}{1+x} = 1-x+x^2-...+(-1)^nx^n |
|||
| 42 | (1+x)^a = 1+ax+\frac{a(a-1)}{2}x^2+O(x^2) |
|||
| 43 | tanx = x+\frac{1}{3}x^3+O(x^3) |
|||
| 44 | arcsinx = x+\frac{1}{6}x^3+O(x^3) |
|||
| 45 | arctanx = x-\frac{1}{3}x^3+O(x^3) |
|||
| 46 | ||||
| 47 | ## 高阶导数 |
|||
| 48 | a^{x^{(n)}} = a^x(lna)^n ,a>0, a\neq 1 |
|||
| 49 | e^{x^{(n)}} = e^x |
|||
| 50 | (sinkx)^{(n)} = k^nsin(kx+n\cdot \frac{\pi}{2}) |
|||
| 51 | (coskx)^{(n)} = k^ncos(kx+n\cdot \frac{\pi}{2}) |
|||
| 52 | (lnx)^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{x^n} |
|||
| 53 | (\frac{1}{x})^{(n)} = (-1)^n \cdot \frac{n!}{x^{n+1}} |
|||
| 54 | [ln(1+x)]^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{(1+x)^n} |
|||
| 55 | (\frac{1}{1+a})^{(n)} = (-1)^n \cdot \frac{n!}{(x+a)^{n+1}} |
|||
| 56 | [(x+x_0)^m]^{(n)} = m(m-1) \cdot \cdot \cdot (m-n+1)(x+x_0)^{m-n} |
|||
| 57 | ``` |